
Developing a Powerful yet Inexpensive
Computational Infrastructure

for the UT Department of Nuclear Engineering

David D. Dixon
April 4, 2009

Developing a Powerful yet Inexpensive Computational
Infrastructure for the UT Department of Nuclear Engineering

Abstract
This paper presents an approach to assembling and configuring a low cost computer cluster and the
software infrastructure necessary to perform parallel calculations of interest to the UT Department of
Nuclear Engineering. Emphasis is placed on simplicity, energy efficiency, reliability, and
computational speed. Purchasing all-new hardware, the cost per computational node is less than $125
in 2009, the software used is freely available, and can be expanded or duplicated with the use of this
document.

This work was funded by DoE grant DE-PS07-07ID14817, “Improvement in Capabilities for the
Nuclear Engineering Department of the University of Tennessee to Support GNEP Research and
Development Programs,” with PI Dr. Ronald Pevey, and satisfies the first objective of the grant.

Table of Contents
 1 Introduction..3
 2 Background..3

 2.1 Existing Cluster from UC...4
 2.2 Design Considerations..5

 2.2.1 Power Consumption...5
 2.2.2 Heat Generation/Removal..5
 2.2.3 Space...6
 2.2.4 Cost...6

 3 Hardware..6
 3.1 Evaluation & Testing..6
 3.2 Pricing/Purchasing..7

 3.2.1 Cabinet..8
 3.2.2 Cases...8
 3.2.3 Power Supplies...9
 3.2.4 Processors and Motherboards...9

 3.2.4.1 AMD Dual Core CPUs and Motherboards...10
 3.2.4.2 AMD Quad Core CPUs and Motherboards...11
 3.2.4.3 Intel Quad Core CPUs and Motherboards..12
 3.2.4.4 Newer Hardware Available...13

 3.3 Assembly Guide...13
 3.3.1 Installation of Components on Motherboard..13
 3.3.2 Installation of Motherboard in Case...13
 3.3.3 Additional Components for Head Node...14
 3.3.4 Connecting Nodes...14

 3.4 Heat Management and Spacing Between Nodes..14
 3.5 Water Cooling Experiment...14

 4 Software...16
 4.1 Overview..16

 4.1.1 Alternatives Considered..16
 4.2 Operating System...16

 4.2.1 Description of Package Manager..16
 4.3 Diskless Remote Boot Linux (DRBL)...16

 4.4 Hardware Monitoring...17
 4.5 Ganglia...17
 4.6 Webmin...20
 4.7 MPICH, LAM MPI..21
 4.8 Application Software..21

 4.8.1 MCNP/MonteBurns..21
 4.8.2 VirtualBox...22
 4.8.3 Matlab...22
 4.8.4 Other Reactor Analysis Tools...22
 4.8.5 ANSYS Multi-Physics..22
 4.8.6 Intel, Portland Group, and GNU Fortran Compilers..22
 4.8.7 C++, Perl, PHP, MySQL, Java, Apache2, Tomcat..22

 4.9 Future Opportunities...23
 4.10 Installation Guide...23

 5 Appendicies..26
 5.1 Sensors Shell Script..26
 5.2 Modified Ganglia Graph PHP Scripts..28
 5.3 Modules Incorporated into DRBL Deployment Script..29

 1 Introduction
Nuclear engineers frequently use Monte Carlo methods to solve radiation transport problems. These
methods are computationally intensive, but benefit from easy parallelization. The cost to purchase a
pre-built cluster is often prohibitive, and can be significantly reduced using commercial off-the-shelf
desktop PC components and freely available open source software. The number of components needed
is kept to a minimum (e.g. using diskless nodes) which reduces cost and power consumption.

The goal in this project is to develop an inexpensive, efficient replacement for the existing cluster, with
a focus on expanding the cluster's size such that it becomes a shared resource for use by students and
faculty. This project is in furtherance of a GNEP readiness grant to establish a computational
infrastructure for students and staff at the University of Tennessee. Simplicity in the hardware
implementation is the first step, complemented by web-based and graphical administration tools.
Further, it is a goal of this project to develop a guide for assembling and configuring a cluster that
requires minimal understanding of software intricacies, and should minimize the extent to which
software is manually configured.

The cluster has already served to execute critical benchmark experiment models in support of a
Master's project by Carlos Juarez, as a parallel programming platform for Hermilo Hernandez,1 for
ANSYS Multi-Physics modeling by James Banfield, fuel cycle optimization tasks by Jack Galloway,2
and for memory-intensive image processing Matlab calculations (that cannot be run on a 32-bit
machine) for Brian Wood, among others. In particular, there was no capability within the department to
execute the Matlab tasks or the ANSYS models prior to the installation of this computing cluster. See
the application software section (4.8) for more detail of current cluster uses.

 2 Background
So-called Beowulf computing refers to a NASA cluster bearing that name built in 1994. Its features
have been replicated in many forms, but there are a few key features:

(i) A set of independent computers using commodity hardware connected over a network
(ii) No custom components
(iii) Commodity operating system and software
(iii) A set of tools for allowing parallel processing
(iv) Appears largely as a single, powerful machine
(v) Trivially reproducible

 A Beowulf cluster typically has a single physical user interface, only one node—the “head” node—is
directly accessible from other machines over a network. This head node is also the primary location of
disk storage space, though other nodes often have hard drives for storage of boot information and as
scratch space.

1 H. Hernandez and G. I. Maldonado, “Added Features and MPI-based Parallelization of the FORMOSA-L Lattice
Loading Optimization Code” Accepted, 2009 ANS Advances in Nuclear Fuel Management IV, Hilton Head Island, SC,
2009.

2 J. Galloway, H. Hernandez, and G.I. Maldonado, “OPTIMIZATION OF AMERICIUM-LOADED LATTICES TESTED
IN 3D BWR CORE-WIDE SIMULATIONS,” Proceedings of the International Conference on the Physics of Reactors,
September 14-19, 2008, Interlaken, Switzerland (CD-ROM, Log#617)

 2.1 Existing Cluster from the University of Cincinnati (UC)

Prior to the installation of the cluster described in this document, the department's only parallel
computing resource was a 10-node cluster brought to UT in late 2007.3

The existing cluster in the department is approximately 6 years old, and has limited usefulness. The
compute nodes run at speeds comparable to or slower than many desktop computers available today.
Further, it runs outdated software incapable of supporting many of the applications (specifically
including security tools) desired. It has only a text-based physical interface, and no web-based
management tools.

This cluster also relies on diskful nodes. This means that every compute node has its own hard drive.
While these nodes boot over the local network, they rely on system images stored locally. This may
have been simpler given the available software; however, it is significantly more complex than a
diskless system to administer as configuration changes must be distributed to the individual nodes.

The hard drives are also somewhat necessary for this system however, as each node has only 1GB of
RAM—insufficient for many common tasks; the hard drives are used for temporary file storage and
memory page swapping (extremely slow). Since hard drives rely on moving parts, they are somewhat
prone to failure, and the constantly spinning disks consume significant power.

model name : Intel(R) Xeon(TM) CPU 2.40GHz
stepping : 5
cpu MHz : 2399.380
cache size : 512 KB
fpu : yes
fpu_exception: yes
cpuid level : 2
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca
cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm
bogomips : 4784.12

3 Zhao, Z. and G.I. Maldonado, “Speedup of Particle Problems with a Beowulf Cluster,” American Journal of Applied
Sciences, 3(8): 1948-1951, 2006.

Figure 1: System Layout

Above is an abbreviated informational listing for one of the CPUs on this cluster. In this listing, key
parameters are the CPU model, cache size, and the list of CPU flags. Clock speed is a very poor
indicator of performance for comparing different CPU families, as the internal architectures are
different. The CPU flags indicate specialized instruction sets that can be used with supporting
codes/compilers. With the CPU model, various CPU parameters can be determined.4

Xeon 2.4 2400 MHz
512 KiB Cache
400 MT/s Front Side Bus
65 W Thermal Design Power
130 nm Feature Size

The cache is small compared to modern CPUs, and the feature size and thermal power are significantly
higher than most CPUs currently on the market. The TDP is consistent with power measurements on
the existing nodes (2-65W processors, hard drive, fans, and other losses bring the total to 175W).
Power and performance are discussed further in the hardware testing and evaluation section.

 2.2 Design Considerations

Incorporated into the overall design approach are several constraints and considerations. With less than
$20,000 to spend cost is important; but ultimately its biggest impact is to limit the number of
computational nodes that can be purchased. Electricity is effectively the only ongoing operational cost,
and without a major investment is available in a fixed quantity—maximizing node efficiency
maximizes the number of nodes that can be powered. Likewise, air conditioners limit the rate at which
heat can be removed from the room. Ultimately, the smallest, cheapest nodes that consume minimal
power with minimal heat would be most desirable. In reality, the most efficient are not the cheapest.
The goal is to extract the most performance from a system that fits within these constraints.

 2.2.1 Power Consumption

Power consumption is largely driven by only a few key components: the processor itself, cooling
system, and the power supply. The power supply is tasked with converting 120V alternating current
(AC) power to a predefined set of direct current (DC) voltages, ranging from -12V to +12V. Rectifying
and regulating the incoming supply is obviously not lossless. Recently, power supplies have been
given some attention, and efficiencies have improved as a result. Active power factor correction is now
available in reasonably-prices power supplies, and 80+ certifications indicate power supplies with 80%
or greater efficiencies.

The processor is the biggest single power draw in the system, and power largely tracks process feature
size (measured in nanometers) and clock speed. Discussed in greater detail in the evaluation section,
the suite of processors examined range in power from less than 25W to more than 100W per core.
Fortunately, at factory settings, the processor line most efficient happens to be the fastest.

 2.2.2 Heat Generation/Removal

Practically speaking, the heat energy added to the room is the same as the electrical power supplied to
the system. The room the cluster is located in has limited cooling capacity, provided via one chilled
water heat exchanger and one conventional (vapor compression) window air conditioner. The capacity
of both units varies with the sink temperature (water or outside air), and room temperature.

4 Wikipedia http://en.wikipedia.org/wiki/List_of_Intel_Xeon_microprocessors

http://en.wikipedia.org/wiki/List_of_Intel_Xeon_microprocessors

The window air conditioner draws extra scrutiny, as its cooling coils have the potential to drop below
freezing. When this happens, frost accumulates on the cooling coils, eventually restricting airflow to
the point that the unit ceases to remove any heat from the room. By having a single-mode (cooling
only) system, there is no defrost cycle available for the coils. The only way to control frost buildup is
to ensure that the duty cycle of the compressor on the air conditioner is kept below approximately 75%.
While it may seem counterintuitive, raising the thermostat setting can result in a colder room when heat
loads are high, as this may be the only way to keep the compressor cycling on and off. When the
compressor cycles off with the blower running, warm air from the room is drawn across the frosty coils
(not being cooled from the inside during this time) and quickly melt it. Humid summers in the
southeast exacerbate this problem.

 2.2.3 Space

In the current configuration, space constraints will likely come into play only after power and heat
removal limits are exceeded. Given, however, that the cluster is not the sole occupant of the room,
opportunities to reduce the physical size of the cluster are considered when they do not adversely affect
the system. Using rackmount components, the cabinet installed could support as many as 320 compute
nodes (80 boxes). That close-packed configuration is likely not possible without significant design
work to get heat out of the cabinet.

 2.2.4 Cost

To make available as much computing power as possible, cost per unit must be minimized. Taking into
account different CPU options (performance levels) complicates the analysis, and rapidly changing
component prices can drive different conclusions at different times. Consider the following example:
each box requires a fixed-price set of components (the box itself, power supply, RAM, and cooling fan)
totaling $150. A dual-core CPU and motherboard are available for $150, and a quad-core set can be
had for $500. In this case, two dual-core systems are $50 cheaper than a quad-core system with the
same level of performance. However, if the price of the quad-core CPU and motherboard drops below
$450, it becomes the more cost effective system. Similar price trends occurred between phases of
construction, and are detailed in the sections that follow.

 3 Hardware

 3.1 Evaluation & Testing

Based on a number of interests, 5 different processors were put through a series of benchmarking tests.
With dozens of processors, and hundreds of motherboard and memory options, figuring out where to
start can seem overwhelming to a first-time computer builder. Two metrics, performance per dollar and
performance per watt, are most important; however, performance is not a clock speed, as clock speeds
across different CPU architectures match differing levels of performance. Performance is how fast the
computer runs your code. Actually testing systems with a representative problem takes into account
memory speeds, front side bus limitations, and cache performance as appropriate. The table below
presents a summary of run times, power consumption, and cost (Q1-2009) for a number of processor
configurations considered. The benchmark was an MCNP k-code calculation, run in parallel across all
four processors using the Message Passing Interface.

Table 1: Summary of Processors Tested

Processor Run Time
Idle Power

(W)
Full Load
Power (W)

Energy Cons.
(Wh)

CPU Cost

AMD Athlon
X2 5200+

18:09 74 145 43.86 $54.99

AMD Phenom
X4 9850

07:12 279 33.46 $154.99

Intel Core 2
Quad Q6700

06:28 63 127 13.69 $204.99

Intel Core 2
Quad Q9300

05:24 45 97 8.73 $239.99

Intel Core 2
Quad Q8200

05:48 45 91 8.8 $169.99

Another metric of value in comparing processor efficiencies is the total power consumed in running a
test case. This value of this metric is approximated by multiplying the full-load power associated with
the CPU by the time it took to run the case. Energy consumption is the primary metric by which
overclocking is evaluated in this study.

Notice in Table 2 that the Intel processors were successfully run at speeds significantly exceeding their
factory rating. Known as overclocking, the processors operating speed can be changed within certain
bounds by changing the clock speed and adjusting supply voltages. At one time attempting to
overclock a processor was quite risky (hardware damage could easily occur if settings were too
aggressive); however, software controls in place today make this much less likely. In most cases, if a
system is not able to boot the factory settings can be restored by power cycling the board.

Table 2: Summary of Processors Tested

Processor Run Time Idle Power (W)
Full Load Power

(W)
Energy Cons.

(Wh)

Intel Core 2 Quad
Q6700 @ 2.66GHz

06:28 63 127 13.69

@ 3.06GHz 06:05 64 138 13.99

@ 3.15GHz 05:48 63 140 13.53

@ 3.25GHz 05:35 64 143 13.31

Intel Core 2 Quad
Q9300 @2.5GHz

05:24 45 97 8.73

@3.00GHz 04:30 47 101 7.58

@3.15GHz 04:17 47 102 7.28

@3.00GHz
w/Larger Heat Sink

04:30 47 93 6.98

Notice that idle power is unaffected by changes in clock speed (no speed stepping enabled), and that
full-load power is only modestly increased while yielding a significant runtime improvement. In the

last case, the heat sink included with the Q6700 processor was installed on the Q9300. This heat sink
had an aluminum fin block roughly 50% taller than the other. The lower fan speeds needed as a result
reduced power consumption by 8W.

 3.2 Pricing/Purchasing

This section attempts to provide a description of the reasoning that led to the purchases made. Detailed
information regarding part numbers and costs are included as an appendix.

 3.2.1 Cabinet

The decision to utilize rackmount components carries with it a potentially significant cost. Basic 6'-
high rack enclosures approach $1,000—a fairly significant portion of the available budget. However,
the surplus lot on campus turned up a nice, new double-sided rack enclosure with plexiglass doors and
an exhaust blower. This cabinet was acquired for $300.

 3.2.2 Cases

The case is simply a physical mounting solution for the computer components for a single node.
Within the scope of rackmount cases, the key parameter to evaluate is case height, measured in rack
units (1.75” each). Taller cases provide more room for peripherals at the expense of occupying more
space in the cabinet. Smaller cases can require careful selection of CPU coolers and RAM to ensure
clearance. 2U cases are a good compromise, allowing sufficient room for standard components without
wasting too much space. Deciding which case to purchase can be somewhat difficult, as differences
between models are often not easily evaluated. However, the difference between a good choice and a
bad choice lies primarily in the quality of construction (difficult to determine in pictures), aesthetics,
and the ease of installing components into it. In other words, just about any case will function. All
compute nodes utilize iStarUSA D-200-PFS5 cases, purchased for less than $100 each (8 at $86.99,10
at $94.99).

5 http://www.newegg.com/Product/Product.aspx?Item=N82E16811165082

Illustration 1: Rackmount Case used for
Compute Nodes

Since the head node would include several hard drives, the cases selected were 4U. From the same line,
they are iStarUSA Storm Series D-400,6 and included a power supply for $165.99.

 3.2.3 Power Supplies

Selecting a power supply entails looking at three parameters: form factor (the physical size of the
power supply), power rating, and efficiency. Efficiencies will not be specified directly, but will be
indicated by the presence or absence of the 80+ mark, indicating 80% efficiency or better. Selecting a
higher power rating than necessary usually incorporates some additional losses, but brings higher levels
of stability. This results from reserve capacity to supply loads on demand, as well as higher wattage
cooling systems (i.e., bigger heat sinks and fans inside the power supply).

The power supplies used on all nodes are Antec EarthWatts EA380 power supplies, with active power
factor correction ($34.99 each).

 3.2.4 Processors and Motherboards

With an eye toward running large MCNP calculations, two key requirements arose for the CPUs,
motherboards, and memory. An inherent limitation of a 32-bit processor is its ability to address only
232 memory locations, or 4GB. Typically, this space has been partitioned equally between the operating
system (kernel space) and process space, meaning that an MCNP process would have a maximum of
2GB available. This is easily exceeded in complex models with modern versions of the code. While
there special techniques for addressing larger memory blocks, they would require significant code
modification.

Availability of 64-bit processors allows addressing up to 16TB of memory (264 address locations), far
more than any motherboard can physically accommodate. Only 64-bit processors were considered for
this cluster. Further, desktop motherboards are typically equipped with 2 to 4 memory slots. With an
interest in running memory intensive applications, and without hard drives to offer swap space, only
motherboards with 4 slots were considered. This limits the number of motherboards available, but does
not impact cost. For simplicity and administration, any motherboard selected should have built-in
video.

6 http://www.newegg.com/Product/Product.aspx?Item=N82E16856999302

Illustration 2: Rackmount Case used for
Head Node

Since this computing cluster was built in stages, price changes and new product introductions have
influenced the “best value” product during the course of construction. Initially (January 2008), quad
core processor offerings were extremely limited and cost prohibitive. The AMD Phenom was the only
credible quad-core option (Intel offerings were too expensive), and the processors available at the time
suffered from a transaction lookup buffer (TLB) bug. As a result, the first set of nodes (10) purchased
were AMD dual core processors.

When revised AMD Phenom processors (without the TLB bug) were released in March, they became a
more cost-effective solution than the dual core units. These processors worked as expected (the cluster
includes 5 of these), delivering roughly double the computational power in an identically-sized package
(see section titled Water Cooling Experiment for more detail). Perhaps the biggest impact of this
processor's release was to put significant price pressure on Intel's Core 2 Quad line of processors, seen
as direct competition. The Core 2 Quad Q6700, released in 2007, hit the market with a $530 price tag,
but was available for less than $300 by the end of Q1-2008. Consideration of these Intel processors
would have been likely, however, the next release from Intel would prove more significant. Consistent
with Intel's tick-tock product development cycle, a line of Core 2 Quad processors became available
utilizing a new, smaller, feature size. These would make up the most recent batch of nodes purchased,
as of September 2008. Since then, Intel has released a new micro architecture, and AMD has released a
line of Phenom processors with a smaller feature size. All are discussed in the sections that follow.

Within any processor family, there are a number of clock speed ratings to choose from, with significant
variations in price. The metric used to determine which clock speed to purchase was GHz per dollar,
where the cost in dollars is the total for the node (including motherboard, RAM, case, etc.). This point
is significant, as the processor made up only about one fourth of the total node cost.

 3.2.4.1 AMD Dual Core CPUs and Motherboards

The first batch of nodes purchased (10) were equipped with AMD Athlon 64 X2 5200+ processors.
These processors were rated at 65W (note that the methods for establishing thermal ratings differs
between Intel and AMD), and operate 2 cores at 2.7 GHz. This processor is supported by any
motherboard with an AM2 socket.

Athlon 64 X2 5200+
2700 MHz
2 x 512 KiB L1 Cache
1000 MHz FSB
13.5x Clock Multiplier
1.325/1.375 V
65 W TDP
Socket AM2
Brisbane Core
Released October 8, 2007
65nm Feature Size

These processors have performed reasonably well, and—despite a high thermal power among the
processors considered—are considerably more energy efficient than the cluster being replaced.

 3.2.4.2 AMD Quad Core CPUs and Motherboards

The second batch of nodes purchased were AMD Phenom X4 9850 Black Edition CPUs, running at 2.5
GHz. While “Black Edition” refers to an unlocked clock multiplier to attract overclockers, no
appreciable overclocking was achievable with the stock heatsink. This processor is four independent
processors on the same core, and with the exception of the clock speed is almost identical to two of the
dual core processors.

An additional point of interest with this processor is the incorporation of copper-water heat pipes to
transport heat from the processor surface to the aluminum cooling fins. Because heat pipes are
ineffective at very low vapor pressures, this heat sink's throughput changes sharply at indicated core
temperatures of about 80C. When operated in open air, the core temperatures are significantly higher
than any other processor tested.

Phenom X4 9850 Black Edition
B3 2.5 GHz
4x 512 KB L1 Cache
2 MB L2 Cache
2 GHz FSB
12.5x Multiplier
1.20 - 1.30 V
125 W TDP
Socket AM2+
Released March 27, 2008
Agena Core
65 nm Feature Size

Illustration 3: Motherboard with AMD Athlon
64 X2 5200+ CPU and Cooler Installed

file:///home/dddixon/Documents/

 3.2.4.3 Intel Quad Core CPUs and Motherboards

These processors and motherboards are the most recent addition to the cluster. Four nodes were added
in September 2008, using a G33M motherboard produced by MSI. This combination of motherboard
and CPU is in use in a 30-node cluster at Los Alamos National Lab, assembled over the summer. Its
robustness under severe operating conditions has been tested, running for several weeks in a room
whose temperature often exceeded 100°F for hours at a time. All of the operation under these
conditions was at speeds from 3.0 to 3.2 GHz. With over 200,000 motherboard hours of operation
without a failure, there is very little room to criticize the performance of this combination.

Illustration 4: AMD Phenom X4 9850 Black Processor with
OEM heat sink installed in ECS A780GM-A Motherboard

Illustration 5: Intel Core 2 Quad
Q8200 CPU installed in MSI G33M
motherboard

 3.2.4.4 Newer Hardware Available

New hardware makes its way to market on a regular basis, and two significant CPU products have been
released since the last batch of nodes were purchased for the cluster. Consistent with the tick-tock
design cycle at Intel, the newest release is a new microarchitecture—i7—produced using the
established 45-nm process. This architecture eliminates the front side bus, and includes hyperthreading
on each of the four processor cores. The most significant performance improvement should be evident
in multithreaded processes with large data requirements.

AMD's latest Phenom processors, designated Phenom II, now utilize a 45-nm process, and should see
energy efficiency improvements of the same scale as with the Intel processors. All other factors equal,
this remains a slower processor.

 3.3 Assembly Guide

For a first time computer builder, the arrival of perhaps dozens of components might be overwhelming.
However, assembly is no different than assembling any other computer—with the exception of the head
node, the number of components to be installed is lower than with the average desktop PC; remember
that there are no hard drives, no independent video cards, DVD drives, etc. This section describes the
basic assembly process.

 3.3.1 Installation of Components on Motherboard

NOTE: These components are sensitive to damage from static discharge. Normal handling is usually
not a problem; however, the components should not be handled more than necessary, and periodic
discharge by touching a grounded surface is advised.
Because space inside many computer cases is limited, it is usually easiest to install the CPU, CPU
cooler, and RAM into a loose motherboard. CPUs for many years have made use of zero insertion
force (ZIF) sockets that require no pressure to make contact. Instead, pins or contacts on the CPU are
clamped in to the mounting socket using a locking lever. The CPU is installed into the motherboard by
lifting the locking lever (and a metal clamp in the case of the CPUs shown here), and setting the CPU
in place. If it seems as if the CPU is not falling into place, double check that it is oriented correctly—
DO NOT use any force. Once in place, lower the clamp and locking lever.

The majority of the heat produced comes from the small area (<1 sq. inch) of the CPU, so it is
necessary to provide a heat sink and fan to cool it. As previously discussed, retail boxed CPUs include
a fan and heat sink, and are shown below. Set the heat sink and fan assembly on top of the CPU, align
the mounting clips and press down on them. This may require considerable force; take care not to flex
the motherboard. Then connect the fan power lead to the matching connector on the motherboard.

RAM is installed by first opening the latches (pushing outward) at either end of the slots. Align the
memory, noting that the connector is keyed so the RAM can be inserted only one way, and push down.
The latches should be pushed into notches at the end of the RAM assemblies. It does not matter on
most motherboards which slots are populated.

 3.3.2 Installation of Motherboard in Case

Physically mounting the motherboard in the case should be relatively straightforward. Connect two
motherboard power cables (24-pin ATX connector, square 4-pin 12V cable), and refer to motherboard
documentation for connecting front panel connectors (power switch, reset, and power LED are most
important).

 3.3.3 Additional Components for Head Node

The head node needs to store the operating system and user files, and will need an extra network
interface if it is to be accessible over a network. The simplest means to disk storage is to install a
single (or multiple) hard drives directly connected to the motherboard. With single drive capacities
exceeding 1.5 TB, and costing less than $0.07/GB, this is effective for small clusters. Two cables need
to be connected to the hard drive, one for power and another for data. For connecting to a network,
simply install an additional network card in one of the expansion slots.

 3.3.4 Connecting Nodes

Each node will need to be connected to power, and to the private network switch serving the cluster
(refer to figure 1 if necessary). The head node will also need to connect to power; one of its network
interfaces will connect to the switch and the other to the public network. Supply power to the switch,
and connect monitor, keyboard, and mouse, and the hardware is ready to be powered on.

 3.4 Heat Management and Spacing Between Nodes

The first attempt to mount 10 dual-core AMD machines in a rack enclosure resulted in overheating
when fully utilized. Automatic shutdown logic built into the BIOS protects the hardware, but it would
be necessary to provide additional cooling to these machines. Part of the problem was determined to be
the close proximity of the case lid to the CPU cooling fan, which severely restricted flow. Two
solutions were immediately viable: leave open rack spaces between nodes, allowing airflow through the
case's top vents or replace the OEM CPU coolers with a lower profile heat sink and fan.

Empty rack spaces reduce the total number of nodes that can be accommodated, and new CPU coolers
could have cost as much as $50 per node. A hybrid solution was tested successfully, where a 1U space
was left open between every other node, and the nodes without ventilation space received new copper
coolers approximately 5 inches in diameter (roughly double the OEM cooler's size). The figures below
show the difference between the two coolers.

7

Notice that the OEM cooler (left) allows airflow in only one direction, while the replacement cooler
has its cooling fins oriented radially. Further, the fins on the replacement cooler are copper instead of
aluminum, and extend to the full height of the fan.
For $175 and only 8 3/4” of rack space, the enclosures can exhaust the full power of the dual-core
CPUs.

 3.5 Water Cooling Experiment

The availability of revised quad-core processors from AMD in March 2008 presented an opportunity to
improve the computational density. The higher thermal power however, further complicates the heat

7 http://www.aztec-online.net/images/amd_heatsink.jpg

removal problem, as there is now twice the power per unit volume (there is no appreciable difference in
the processors' efficiency).

One fairly common solution for a single machine is to replace conventional heat sinks with water
blocks, and cool the system with water. The approach here was to use a finned copper water block,
seen below, to mate with individual CPUs, and connect to a pumped water loop rejecting heat through
an automotive radiator. Using flexible tubing between components, and a rigid PVC manifold, 5 quad-
core processors were mounted in a custom-built 8U rackmount chassis. A test run was performed
running all 5 processors (625W) that demonstrated more-than-adequate cooling.

Illustration 6: Water Block for
Cooling CPU

Illustration 7: AMD Quad-Core Motherboards
Connected to Water Cooling System

 4 Software

 4.1 Overview

A number of very useful step-by-step guides are available to aid in the software configuration for a
computer cluster. The operating system used here is Ubuntu, a free version of Linux distributed with
good hardware support and an easy installation process. Further, its package manager makes installing
and configuring most software very easy. The operating system is installed on the head node only.
Diskless Remote Boot Linux (DRBL) is then used to support remote booting (i.e. over the network) of
the compute nodes. DRBL is installed through Ubuntu's Synaptic Package Manager, and a script walks
the user through the configuration process.

 4.1.1 Alternatives Considered

Two other clustering packages, often more popular, were considered. The first, ROCKS, is currently in
use on the spacenuke cluster at Los Alamos National Laboratory. It offers support for diskless nodes,
however, it does not support the ethernet hardware built in to many current motherboards. This is a
result of the use of Red Hat Enterprise Linux-class kernels, which follow a much slower development
pace than others.

The second alternative, OSCAR, would have allowed the use of a newer version of the Linux kernel.
This cluster software package was installed and tested, but lacked sufficient support for diskless nodes.
The feature technically existed, but did not work correctly and had seen no development in
approximately two years.

 4.2 Operating System

The operating system selected is Ubuntu's Long Term Support Server Edition. Ubuntu follows a 6-
month release cycle, with a long term support version every 12 months. Release numbers match the
month and year of release, so the version installed in 2008 on the UT cluster is 8.04, released April,
2008. This operating system is installed through the use of a burned CD image, and supported all of
the hardware on the UT cluster out-of-the-box. This, combined with an excellent software package
manager and robust server edition made Ubuntu the operating system of choice.

 4.2.1 Description of Package Manager

Ubuntu, like the Debian distribution it is based on, uses dpkg for installing and uninstalling software at
the command line. Ubuntu, however, includes the Synaptic Package Manager for graphical listings of
software available. With this interface, Synaptic allows installation, re-installation, or removal of
software by simply checking a box next to the listing. Synaptic also shows any differences between the
currently installed version of a software package and the newest version available.

 4.3 Diskless Remote Boot Linux (DRBL)

Diskless Remote Boot Linux is the package—installed using the Synaptic Package Manager—that
allows configuration of boot images for the compute nodes. It also performs a number of other tasks
necessary in setting up a cluster:

• Manages dynamic host control protocol (DHCP) server settings

• Configures firewall

• Modifies hosts file to identify new compute nodes

• Collects MAC addresses to match boot settings with physical nods

• Can be used to configure Clonezilla images

 4.4 Hardware Monitoring

With limitations imposed by the facilities available, it is desirable to remotely monitor the “health” of
the hardware in operation. Fortunately, it is possible to query thermocouples manufactured as part of
the CPUs and motherboards installed. Accessing this sensor data requires loading a kernel chip driver
for the specific hardware present, then making a call to sensors, which is part of the lm-sensors
package. Determining which driver to load is aided by sensors-detect, which attempts to try each of the
available modules and determine which ones are present.

On calling sensors, a simple text output is returned with any voltage readings, temperatures, and fan
speeds available. As this does not provide for historical data, or monitoring multiple machines at once,
its integration with Ganglia (see next section) will be essential.

 4.5 Ganglia

Ganglia is a scalable cluster monitoring software package capable of monitoring a number of
predefined metrics (e.g. CPU load, memory usage) as well as custom metrics (e.g. temperatures, fan
speeds). Each node runs a monitoring daemon, which broadcasts data to all other nodes on the
network's subnet. When the meta-daemon running on the head node queries the cluster for data, only
one node need respond with a message containing data for all of the nodes. This is an attempt to
provide for scaling to extremely large computing clusters.

The data collected by the meta-daemon is stored in a round-robin database. In such a database, when
new data is received it flushes out the oldest data to make room. In other words, after an initial period
of time where the database filled, it will not grow without bound. This data is readily queried by a web
application, running PHP scripts, that provides data as shown in the figures that follow.

Illustration 8: Main Ganglia Cluster Status Page

One of the custom tools added to the Ganglia status page is a system-average temperature plot. This
has proven useful in diagnosing room air conditioning problems, as a temperature rise appears without
a matching increase in system load. The modifications included making additional queries to the
round-robin database, and performing mathematical sums/averages within the scope of a web page (i.e.
no external code is used, all graphs are generated on the user's request). The figure below shows a
sample plot of week-long average temperature history.

Generally speaking, Ganglia is a very valuable tool for monitoring cluster utilization and health. Its
most important purpose, given that the cluster does not make use of a job scheduler, is to allow users to
quickly determine which nodes are available for job submission. Without the historical information,
short drops in CPU usage could lead a user to believe that a machine is available. Such drops are very
common running MCNP in parallel k-code, as a data collection rendezvous occurs after each cycle.

The default and custom metrics already described are supplemented by an additional script that submits
metric data for each active user, showing that user's memory and CPU usage on each node. This allows
tracing of resource utilization problems, and in the event of a crash documents who was active at the
time it occurred. This script is called by the hardware monitoring script, documented in section 5.1.

Node detail pages are shown in the next three figures, showing the node status, utilization by user, and
hardware health.

Illustration 9: Custom System-Average Temperature
Monitoring Plot

Illustration 10: Ganglia Node Detail Page

Illustration 11: Ganglia Node Detail Page - User CPU Utilization

 4.6 Webmin

Many system administration tasks are typically not very user friendly in Linux environments. Most are
accomplished through the use of command line activity and configuration file manipulation. One tool,
installed on the UT cluster, that greatly simplifies administration is Webmin. Webmin is a web-based
system administration tool that provides graphical, point-and-click access to many common tools while
preserving the ability to access configuration files directly through the interface. Additionally, changes
to configuration files outside of Webmin will be read back into Webmin's graphical interface
automatically. The following two figures show the main Webmin status page, and the user account
administration page.

Illustration 13: Webmin System Status Page

Illustration 12: Ganglia Node Detail Page - Hardware Health (System
Voltages, Temperatures, Fan Speed)

 4.7 MPICH, LAM MPI

The Message Passing Interface (MPI) is probably one of the most popular protocols for exchanging
process data across multiple machines for code execution in parallel. Two implementations of MPI—
MPICH and LAM MPI—are currently installed on the UT cluster. MPICH is most commonly used by
MCNP users, while LAM MPI is the default for some of the code written by Hermilo Hernandez.

The presence of MPI is perhaps the most important threshold for enabling parallel code execution on
the UT cluster. The MPI implementations are configured to be enabled at boot for the head node and
all of the compute nodes over the Ethernet links between them.

 4.8 Application Software

This section provides basic descriptions of software made available to nuclear engineering students and
faculty with the installation of this computer cluster.

 4.8.1 MCNP/MonteBurns

A number of MCNP executables are available in the /opt/exe directory on the cluster. These include a
number of versions of MCNP4C, MCNP5, and MCNPX, with a number of compilation options (e.g.
with and without plotting capability). One option not available elsewhere is a parallel-capable version
of MCNPX that reduces the amount of memory allocated to the amount necessary to support neutron,
photon, and electron calculations. This results in the ability to perform even larger calculations (at least
in terms of geometry), and executes approximately 10% faster than the standard version in most cases.

Monte Carlo depletion tools are also available in the form of MonteBurns, which is an external
coupling of MCNP (X or 5) and ORIGEN, and MCNPX 2.6, which couples MCNPX and CINDER
internally.

Illustration 14: Webmin User Accounts List

 4.8.2 VirtualBox

VirtualBox is a virtual machine software platform that allows users to create their own virtual machines
for tasks where specific operating system support is necessary or where experimentation with operating
system parameters is necessary without wanting to disturb the existing cluster infrastructure. Uses of
VirtualBox would include executing Windows-only software, Linux software that requires a
distribution other than Debian/Ubuntu, to include ANSYS Multi-Physics. VirtualBox is freely
available software supported by Sun Microsystems.

 4.8.3 Matlab

Matlab has been installed using a University-provided license supporting 64-bit execution with up to
8GB of memory (and more with the use of swap space—this is not limited by addressing capability).
Brian Wood is currently making use of this capability for processing CT images. His use of the cluster
began when it became impossible to load certain sets of data on a 32-bit machine, and has realized the
significantly increased execution speed provided by the cluster.

 4.8.4 Other Reactor Analysis Tools

The CoreMaster 2 suite of reactor analysis tools developed by Westinghouse are available on the
cluster and are currently supporting advanced fuel cycle development activities as part of a PhD for
Jack Galloway. This package includes PHOENIX and POLCA among others.

Also available are versions of NESTLE and SCALE, previously unavailable within the department on a
high-performance computer.

 4.8.5 ANSYS Multi-Physics

A license for ANSYS Multi-Physics for use by James Banfield in support of HTGR fuel block stress
analysis funded by Los Alamos National Laboratory at the end of 2008. This license is renewable
annually, and is available to others within the department while the license is active.

 4.8.6 Intel, Portland Group, and GNU Fortran Compilers

Licenses for the Intel and Portland Group optimizing FORTRAN compilers have been purchased for
this cluster. These compilers, combined with the MPI packages, provide the ability to develop parallel
computer codes. Hermilo Hernandez has been making use of this capability.

Also available is the freeware GNU compiler suite, which includes FORTRAN 77 and 95 compilers.
This is not, however, an optimizing compiler.

 4.8.7 C++, Perl, PHP, MySQL, Java, Apache2, Tomcat

Other code and web development tools available on the cluster include GNU C++, Perl and PHP for
scripting, the MySQL database platform, Java Virtual Machine and the Java Software Development
Kit, and the Apache2 web server with Java servlets enabled through Tomcat. These tools are well
documented elsewhere, and are listed here only to indicate their presence on the cluster. With the
exception of C++, Perl, and PHP, these tools were not available on the old UC cluster.

 4.9 Future Opportunities

• More nodes

◦ Processors are continually improving, and are increasingly more affordable. The platform is
almost infinitely expandable, with options to allow separate subnets to increase network
bandwidth.

• Smaller form factors

◦ The energy efficiency improvements reported in this document have resulted in
motherboard designs based on the mini-ITX form factor that support the fastest quad-core
processors available today. Previously, this form factor (about 6” square, compared to the
9” square motherboards currently in use) was reserved for very low power (thermal and
computational ability) applications because of the difficulty in managing the heat generated.
Consequently, there are a few case designs in the works that will allow installation of two or
more motherboards in a single 1U rackmount case.

• Development of a Job Scheduler and Automated Power Management system

◦ Currently available job schedulers are not really designed for the types of computing tasks
typical of nuclear engineers. Most are somewhat difficult to set up, and less than user
friendly. Development of a simple scheduler, with an eye towards MPI applications, could
be combined with a system that powers nodes on and off as they are needed. Note that the
capability of powering nodes on and off remotely is already available, but control of that
functionality is reserved for system administrators.

 4.10 Installation Guide

This installation guide is intended to be as brief as possible, while still providing a step-by-step process
for configuring the necessary cluster software. More detail about individual packages can be found
through online sources.

Ubuntu-Server install
Make sure to select LAMP server and OpenSSH server
Recommend use of LVM

Uncomment community entries in /etc/apt/sources.list, add the following
line at the end of the file:
deb http://free.nchc.org.tw/drbl-core drbl stable testing
Alternate for above step: Under the system menu, go to Administration,
then Software Sources. Make sure all checkboxes are checked under
Ubuntu Software, then click Add under Third Party Software and add the
link above.

Add key for DRBL: (note the need to run apt-key as su is omitted from
drbl installation guide)
wget http://drbl.nchc.org.tw/GPG-KEY-DRBL; sudo apt-key add GPG-KEY-DRBL

sudo apt-get update
sudo apt-get upgrade

sudo apt-get install ubuntu-desktop build-essential librrd2-dev libapr1-
dev libconfuse-dev libexpat1-dev python-dev rrdtool apache2 php5-mysql
libapache2-mod-php5 localepurge vim lm-sensors drbl libx11 libx11-dev
Alternate: Select these packages using the Synaptic package manager
found under System-->Administration.

In the localepurge dialog, select only the three formats containing en-
US
Set root password: sudo passwd root
Reboot (type sudo reboot)

Optionally, edit /etc/vim/vimrc and remove the " in front of syntax on

Login using the username and password created during the ubuntu setup
process.

Left-click network icon in upper right corner. Click unlock, enter
password. For network interface(s) that will provide service to compute
nodes, edit properties as follows:
Disable roaming mode
Configuration=Static IP address
IP address= 192.168.0.254
Subnet mask=255.255.255.0
Gateway address=blank
If using more than 1 interface, increment third octet (number) in IP
address. Recommend matching 3rd octet with interface number (e.g. eth0
--> 192.168.0.254)

Go to http://drbl.sourceforge.net/one4all/

Open a terminal window

sudo /opt/drbl/sbin/drblsrv -i

Do you want to install those network installation boot images NO
Do you want to use the serial console output for clients NO
Do you want to upgrade operating system NO

While you're waiting for the previous command to finish, run sensors-
detect to determine which modules it looks like it needs to be added to
get temperature, fan speed, and voltage data.
Modify /opt/drbl/sbin/drblpush: search for "add any modules" to get to
the section where you can add chip drivers to be loaded by the compute
nodes, and add the modules recommended by sensors-detect before the END
MODULE line.

For CPU frequency scaling, add
powernow_k8 or acpi, depending on CPU type
cpufreq_ondemand
freq_table

Change /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor to ondemand

Install Ganglia
Download the ganglia-monitor-core package from http://ganglia.info
Follow instructions at http://www.zimbio.com/pilot?ID=xEp3SD99KI4&ZURL=
%2FUbuntu%2BLinux%2Fnews%2FxEp3SD99KI4%2FInstalling%2Bganglia
%2B3%2B1%2B1%2BUbuntu%2BLinux%2B8%2B04&URL=http%3A%2F%2Fdx13.co.uk
%2Farticles%2F2008%2F9%2F12%2FInstalling-ganglia-311-on-Ubuntu-Linux-
804-Hardy-Heron.html
or http://docs.google.com/View?docid=dgmmft5s_45hr7hmggr

Follow instructions for server running gmond and gmetad
Note that in the command to copy the web files both the copy and move
must be run as su

Copy /etc/init.d/ganglia-monitor and /etc/init.d/gmetad scripts from
necluster OR install ganglia packages using synaptic *before* installing
from source

Copy /opt/drbl/conf/client-extra-service.example to
/opt/drbl/conf/client-extra-service, and add ganglia-monitor and cron to
the list.
Copy sensors.sh to /usr/bin (or include its full path in crontab)
Edit /etc/crontab to include the following line:
* * * * * root sensors.sh

MCNP
To compile MCNP with plotting, you may need 32-bit versions of X11
libraries. The easiest way to do this is with the getlibs package,
available here: http://ubuntuforums.org/showthread.php?t=474790

Install it, then run sudo getlibs -l libX11.a

On the plot menu, set the following:
3. Graphics Library Path (entry) /usr/lib

4. Graphics Library Name (entry) libX11.a

5. Graphics Include Path (entry) /usr/include

 5 Appendicies

 5.1 Sensors Shell Script
#!/bin/bash#

/etc/sysconfig/ganglia is used to specify INTERFACE
CONFIG=/etc/sysconfig/ganglia
[-f $CONFIG] && . $CONFIG[

#default to eth0
if [-z "$MCAST_IF"]; then
 MCAST_IF=eth0
fif

GMETRIC_BIN=/usr/bin/gmetric
establish a base commandline
GMETRIC="$GMETRIC_BIN"G

Grab a random value between 0-30.
value=$RANDOM
while [$value -gt 30] ; do
 value=$RANDOM
doned

Sleep for that time.
sleep $values

SENSORS=sensors
if [`${SENSORS} | head -n 1` == f71882fg-isa-0a10]; then
send cpu temps if gmond is running
#for i in `seq 1 1000000`;
#do
 # send cpu temperatures
 for temp in `${SENSORS} | grep "hyst = +84" | cut -b 14-18`; do

gmetric -tfloat -ncpu_temp -uC -v$temp -d360
 echo cpu_temp $temp
 done
 for temp in `${SENSORS} | grep "hyst = +81" | cut -b 14-18`; do
 gmetric -tfloat -nsys_temp -uC -v$temp -d360
 echo sys_temp $temp
 done
 for temp in `${SENSORS} | grep "System" | grep "RPM" | cut -b 13-
17`; do
 gmetric -tfloat -nsys_fan -uRPM -v$temp -d360
 echo sys_fan $temp
 done
 for temp in `${SENSORS} | grep "CPU" | grep "RPM" | cut -b 13-17`;
do
 gmetric -tfloat -ncpu_fan -uRPM -v$temp -d360
 echo cpu_fan $temp
 done
 /usr/bin/svoltages.sh
sleep 60
#done
elif [`${SENSORS} | head -n 1` == k8temp-pci-00c3]; then
 for temp in `${SENSORS} | grep "temp2" | cut -b 14-18`; do
 gmetric -tfloat -ncpu_temp -uC -v$temp -d360
 echo cpu_temp $temp
 done
 for temp in `${SENSORS} | grep "temp1" | cut -b 14-18`; do
 gmetric -tfloat -nsys_temp -uC -v$temp -d360
 echo sys_temp $temp

 done
 for temp in `${SENSORS} | grep "fan2" | grep "RPM" | cut -b 13-17`;
do
 gmetric -tfloat -nsys_fan -uRPM -v$temp -d360
 echo sys_fan $temp
 done
 for temp in `${SENSORS} | grep "fan1" | grep "RPM" | cut -b 13-17`;
do
 gmetric -tfloat -ncpu_fan -uRPM -v$temp -d360
 echo cpu_fan $temp
 done
/home/dixon/svoltages_AMD.sh
elif [`${SENSORS} | head -n 1` == it8716-isa-0e80]; then
 for temp in `${SENSORS} | grep "temp2" | cut -b 14-18`; do
 gmetric -tfloat -ncpu_temp -uC -v$temp -d360
 echo cpu_temp $temp
 done
 for temp in `${SENSORS} | grep "temp1" | cut -b 14-18`; do
 gmetric -tfloat -nsys_temp -uC -v$temp -d360
 echo sys_temp $temp
 done
 for temp in `${SENSORS} | grep "fan2" | grep "RPM" | cut -b 13-17`;
do
 gmetric -tfloat -nsys_fan -uRPM -v$temp -d360
 echo sys_fan $temp
 done
 for temp in `${SENSORS} | grep "fan1" | grep "RPM" | cut -b 13-17`;
do
 gmetric -tfloat -ncpu_fan -uRPM -v$temp -d360
 echo cpu_fan $temp
 done
/home/dixon/svoltages_AMD.sh
else
 echo Sensors Output Not Regognized by sensors.sh
fi
/usr/bin/user_stats.pl

svoltages.sh
#!/bin/bash

CONFIG=/etc/sysconfig/ganglia
[-f $CONFIG] && . $CONFIG[

#default to eth0
if [-z "$MCAST_IF"]; then
 MCAST_IF=eth0
fif

GMETRIC_BIN=/usr/bin/gmetric
establish a base commandline
GMETRIC="$GMETRIC_BIN"G

SENSORS=sensorsS

 # send voltages
 for temp in `${SENSORS} | grep "3.3V" | cut -b 13-18`; do

gmetric -tfloat -nvolt_3.3 -uV -v$temp -d120
 echo `hostname` volt_3.3 $temp
 done
 for temp in `${SENSORS} | grep "Vcore" | cut -b 13-18`; do
 gmetric -tfloat -nvolt_Vcore -uV -v$temp -d120
 echo `hostname` volt_Vcore $temp
 done
 for temp in `${SENSORS} | grep "Vdimm" | cut -b 13-18`; do
 gmetric -tfloat -nvolt_Vdimm -uV -v$temp -d120
 echo `hostname` volt_Vdimm $temp

 done
 for temp in `${SENSORS} | grep "Vchip" | cut -b 13-18`; do
 gmetric -tfloat -nvolt_Vchip -uV -v$temp -d120
 echo `hostname` volt_Vchip $temp
 done
 for temp in `${SENSORS} | grep "+5V" | cut -b 13-18`; do
 gmetric -tfloat -nvolt_5V -uV -v$temp -d120
 echo `hostname` volt_+5V $temp
 done
 for temp in `${SENSORS} | grep "12V" | cut -b 13-18`; do
 gmetric -tfloat -nvolt_12V -uV -v$temp -d120
 echo `hostname` volt_+12V $temp
 done
 for temp in `${SENSORS} | grep "5VSB" | cut -b 13-18`; do
 gmetric -tfloat -nvolt_5VSB -uV -v$temp -d120
 echo `hostname` volt_5VSB $temp
 done
 for temp in `${SENSORS} | grep "3VSB" | cut -b 13-18`; do
 gmetric -tfloat -nvolt_3VSB -uV -v$temp -d120
 echo `hostname` volt_3VSB $temp
 done
 for temp in `${SENSORS} | grep "Battery" | cut -b 13-18`; do
 gmetric -tfloat -nvolt_Battery -uV -v$temp -d120
 echo `hostname` volt_Battery $temp
 done

 5.2 Modified Ganglia Graph PHP Scripts

This Ganglia graph script adds generation of the cluster-average temperature plot that appears as part of
the header on the main Ganglia page.

<?php<<

/* Pass in by reference! */
function graph_cputemp_report (&$rrdtool_graph) {f

 global $context,
 $cpu_idle_color,
 $cpu_nice_color,
 $cpu_system_color,
 $cpu_user_color,
 $cpu_wio_color,
 $hostname,
 $range,
 $rrd_dir,
 $size;

 $rrdtool_graph['height'] += $size == 'medium' ? 14 : 0 ;
 $title = 'Temperatures';
 if ($context != 'host') {
 $rrdtool_graph['title'] = $title;
 } else {
 $rrdtool_graph['title'] = "$hostname $title last $range";

 }
$rrdtool_graph['upper-limit'] = '100';
$rrdtool_graph['lower-limit'] = '0';
 $rrdtool_graph['vertical-label'] = 'deg-C';
$rrdtool_graph['extras'] = '--rigid';#

 if($context != "host") {

 /* If we are not in a host context, then we need to calculate
the average */
 $series =
 "DEF:'num_nodes'='$
{rrd_dir}/cpu_user.rrd':'num':AVERAGE "
 ."DEF:'sys_temp'='$
{rrd_dir}/sys_temp.rrd':'sum':AVERAGE "
 ."CDEF:'csys_temp'=sys_temp,num_nodes,/ "
 ."DEF:'cpu_temp'='$
{rrd_dir}/cpu_temp.rrd':'sum':AVERAGE "
 ."CDEF:'ccpu_temp'=cpu_temp,num_nodes,/ "
."DEF:'cpu_maxtem'='$
{rrd_dir}/cpu_temp.rrd':'sum':AVERAGE "
."CDEF:'ccpu_maxtem'=cpu_maxtem,num_nodes,/ "
."DEF:'cpu_idle'='$
{rrd_dir}/cpu_idle.rrd':'sum':AVERAGE "
."CDEF:'ccpu_idle'=cpu_idle,num_nodes,/ "
 ."LINE2:'csys_temp'#$cpu_user_color:'Avg System Temp'
"
 ."LINE2:'ccpu_temp'#$cpu_nice_color:'Avg CPU Temp' ";
."LINE2:'ccpu_maxtem'#$cpu_system_color:'Max CPU
Temp' ";
$series .= "STACK:'ccpu_idle'#$cpu_idle_color:'Idle
CPU' ";

 }
 // Context is not "host"
 else {

 $series ="DEF:'cpu_user'='${rrd_dir}/cpu_user.rrd':'sum':AVERAGE
"
 ."DEF:'cpu_nice'='${rrd_dir}/cpu_nice.rrd':'sum':AVERAGE "
 ."DEF:'cpu_system'='${rrd_dir}/cpu_system.rrd':'sum':AVERAGE "
 ."DEF:'cpu_idle'='${rrd_dir}/cpu_idle.rrd':'sum':AVERAGE "
 ."AREA:'cpu_user'#$cpu_user_color:'User CPU' "
 ."STACK:'cpu_nice'#$cpu_nice_color:'Nice CPU' "
 ."STACK:'cpu_system'#$cpu_system_color:'System CPU' ";

 if (file_exists("$rrd_dir/cpu_wio.rrd")) {
 $series .= "DEF:'cpu_wio'='$
{rrd_dir}/cpu_wio.rrd':'sum':AVERAGE ";
 $series .= "STACK:'cpu_wio'#$cpu_wio_color:'WAIT CPU' ";
 }

 $series .= "STACK:'cpu_idle'#$cpu_idle_color:'Idle CPU' ";
 }

 $rrdtool_graph['series'] = $series;

 return $rrdtool_graph;
}}

?>

 5.3 Modules Incorporated into DRBL Deployment Script

The DRBL deployment script, drblpush, contains a section to add a list of kernel modules to be loaded
by compute nodes. A list is provided below of the modules currently requested. The first three provide
access to hardware monitoring sensors for the different motherboards in use, while the remainder
provide the CPU frequency scaling that significantly reduces the idle power consumption of the cluster.

k8temp
it87

f71882fg
powernow_k8
acpi
cpufreq_ondemand
freq_table

	 1 Introduction
	 2 Background
	 2.1 Existing Cluster from the University of Cincinnati (UC)
	 2.2 Design Considerations
	 2.2.1 Power Consumption
	 2.2.2 Heat Generation/Removal
	 2.2.3 Space
	 2.2.4 Cost

	 3 Hardware
	 3.1 Evaluation & Testing
	 3.2 Pricing/Purchasing
	 3.2.1 Cabinet
	 3.2.2 Cases
	 3.2.3 Power Supplies
	 3.2.4 Processors and Motherboards
	 3.2.4.1 AMD Dual Core CPUs and Motherboards
	 3.2.4.2 AMD Quad Core CPUs and Motherboards
	 3.2.4.3 Intel Quad Core CPUs and Motherboards
	 3.2.4.4 Newer Hardware Available

	 3.3 Assembly Guide
	 3.3.1 Installation of Components on Motherboard
	 3.3.2 Installation of Motherboard in Case
	 3.3.3 Additional Components for Head Node
	 3.3.4 Connecting Nodes

	 3.4 Heat Management and Spacing Between Nodes
	 3.5 Water Cooling Experiment

	 4 Software
	 4.1 Overview
	 4.1.1 Alternatives Considered

	 4.2 Operating System
	 4.2.1 Description of Package Manager

	 4.3 Diskless Remote Boot Linux (DRBL)
	 4.4 Hardware Monitoring
	 4.5 Ganglia
	 4.6 Webmin
	 4.7 MPICH, LAM MPI
	 4.8 Application Software
	 4.8.1 MCNP/MonteBurns
	 4.8.2 VirtualBox
	 4.8.3 Matlab
	 4.8.4 Other Reactor Analysis Tools
	 4.8.5 ANSYS Multi-Physics
	 4.8.6 Intel, Portland Group, and GNU Fortran Compilers
	 4.8.7 C++, Perl, PHP, MySQL, Java, Apache2, Tomcat

	 4.9 Future Opportunities
	 4.10 Installation Guide

	 5 Appendicies
	 5.1 Sensors Shell Script
	 5.2 Modified Ganglia Graph PHP Scripts
	 5.3 Modules Incorporated into DRBL Deployment Script

